مقاله application of soft computing methods in the analysis of V

مقاله application of soft computing methods in the analysis of Velocity field in dividing channel فایل ورد (word) دارای 12 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد مقاله application of soft computing methods in the analysis of Velocity field in dividing channel فایل ورد (word) کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله application of soft computing methods in the analysis of Velocity field in dividing channel فایل ورد (word) ،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن مقاله application of soft computing methods in the analysis of Velocity field in dividing channel فایل ورد (word) :
سال انتشار: 1393
محل انتشار: اولین کنفرانس سراسری توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران
تعداد صفحات: 12
چکیده:
The simplest water- diversion method in irrigation systems, agriculture and drainage systems is using intake. Measuring the mean velocity is one of the essential hydraulic parameters in increasing the efficiency of intake. In this study the mean velocity will be predicted for different width ratios of a intake using ANN- MLP neural network model. In order to do that the flow field within a 90- degree intake was first three- dimensionally simulated using ANSYS- CFX. k- turbulence model has been used in this simulation. The neural network used in this study includes 3 inputs coordinates (Y*), the ratio of the branch channel to the main channel, and the linear mean velocity (V*line). V*line is the average velocity in the horizontal column of the branch channel which has been measured by numerical model. A comparison between the numerical and experimental results indicate the proper accuracy of the numerical model in predicting the specifications of the flow field within the intake in addition the comparison between the obtained results from ANN model prediction and the experimental results indicates the acceptable degree of accuracy of the artificial neural network model in predicting the flow mean velocity in intake and for different width ratios.

کلمات کلیدی :
» نظر